10.1 Definition of Parametric Equations
Parameter: $t$ is a parameter in functions $f(t)$ and $g(t)$
Parametric Equations: $x=f(t), y=g(t)$ where $t$ is time
Graph $(x,y)$ values for $t\in[a, b]$
Question Types
- Sketch parametric equation
(e.g. Sketch $x=t^2-2t, y=t+1,t \in [0,4]$)
10.2 Calculus with Parametric Curves
Differentiation:
- $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$
- Notation: $\frac{dx}{dt}=f',\frac{dy}{dt}=g'$
- Vertical Tangent: $\frac{dx}{dt}=0,\frac{dy}{dt}\ne0$
- Horizontal Tangent: $\frac{dy}{dt}=0,\frac{dx}{dt}\ne0$
- $\frac{d^2y}{dx^2}=\frac{d}{dt}(\frac{dy}{dx})/\frac{dx}{dt}$
Area:
- $A=\int_a^b y \, dx$
- $A_{parametric}=\int^\beta_\alpha g(t)f'(t) \, dt$
(when $t \in [\alpha,\beta]$)
Arc Length:
- $L=\int^b_a\sqrt{1+(\frac{dy}{dx})^2} \, dx$
- $L_{parametric}=\int_\alpha^\beta \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2} \, dt$
(requires $f',g'$ to be continuous on $[\alpha,\beta]$, curve traversed exactly once)