Coordinate Axes: Perpendicular lines through the origin
Coordinate Plane: Planes determined by coordinate axes
Surface: Any shape created by an equation with $x,y,z$ in $\R^3$
Distance: $|P_1P_2|=\sqrt{(x_2-x_1)^2+(y_2 -y_1)^2+(z_2-z_1)^2}$
Vector: Magnitude and direction
Displacement Vector: $\vec v = \vec{AB}$
Combining Vectors: $\vec{AC}=\vec{AB}+\vec{BC}$
Vector Components: $\vec{v}=\langle a_1, a_2 \rangle$ from the origin
Position Vector: $\vec{OP}$ a vector representation from the origin to a point
Vector Length: $||\vec{v}|| = \sqrt{v_1^2+v_2^2+v_3^2} = \sqrt{\vec{v} \cdot \vec{v}}$
Standard Basis Vectors: $\vec{i} = \langle1,0,0\rangle, \vec j = \langle 0, 1, 0 \rangle, \vec k = \langle 0, 0, 1 \rangle$
Dot Product: $\vec a \cdot \vec b = a_1b_1 + a_2b_2 + \dots + a_nb_n$