15.1 Double Integrals over Rectangles

Iterated Intergral: $\int_{x=a}^{x=b} \int_{y=c}^{y=d} f(x,y) \, dy \, dx$

15.2 Double Integrals over General Regions

Type I: Plane $D=[a,b] \times [g_1(x), g_2(x)]$ lies between two continuous functions of $x$

Type II: Plane $D=[h_1(x),h_2(x)] \times[c,d]$ lies between two continuous functions of y

15.3 Double Integrals in Polar Coordinates

Polar Rectangle: $R=\{(r, \theta) | a \le r \le b, \alpha \le \theta \le \beta\}$

If $f$ is continuous on polar rectangle $R$ where $0 \le \beta - \alpha \le 2\pi$

If $R=\{(r, \theta) \, | \, h_1(\theta) \le r \le h_2(\theta), \, \alpha \le \theta \le \beta\}$

Intuition: The r and θ define the x-y plane’s shape, and the function is the z-axis height