Definitions
Natural Numbers: $\N = \{0,1,\dots\}$
Power Set: $\mathcal{P}(S)=\{A: A\sub S \}$
- Example: $\mathcal{P}(\{1, 2\})=\{\{\}, \{1\}, \{2\}, \{1, 2\}\}$
Functions
Function: $f:A\to B$
- A: Domain (Set of all inputs)
B: Codomain (Set of all possible outputs)
- All $a \in A$ is mapped to some value in $B$
Not all $b \in B$ is mapped.
- Criteria: $\forall a \in A, f(a) \in B$
- Example
Injective / One-to-One: $f:A\to B$ is injective if
- $\forall x, y \in A, (x \neq y \implies f(x) \neq f(y))$
”If the inputs are different, the outputs are different”
- Alternative: $\forall x, y \in A, (f(x) = f(y) \implies x = y)$
- Pigeonhole Principle: $|B| < |A| \Leftrightarrow \neg\exists f:A\to B$
- Example: Hilbert’s Hotel - Injective function fitting infinite number of people (domain) to infinite number of rooms (codomain)
Surjective / Onto: $f:A \to B$ is surjective if
- $\forall b \in B, \exists a \in A \text{ s.t. } f(a) = b$
”Every element of the codomain is mapped to”
- Note: Always specify domain and codomain when defining a function
Bijective: Both injective and surjective
Cantor’s Theorem