Binary Relation
- $R: \{\{a,b\} : a, b \in A\} \to [0, 1]$
- Compares elements in a set $A$ (e.g. $aRb$ where $a,b\in A$)
- $R$ is anything that take in two parameters (Examples: $<, >, \le, \ge, \dots$ )
- Visualizing: In $aRb$, treat $a, b$ as vertices, and $aRb$ as a directed edge, draw a graph.
- Example
Binary Relation Properties
Irreflexive $\Leftrightarrow (\forall a \in A, a\cancel{R}a)$ (no self loops)
- Reflexive $\Leftrightarrow (\forall a \in A, aRa)$ (all self loops)
Note: Reflexive is not the negation of irreflexive.
Asymmetric $\Leftrightarrow (\forall a, b \in A: aRb \Rightarrow b\cancel{R}a)$ (all edges single-directional)
- Symmetric $\Leftrightarrow (\forall a,b \in A: aRb \implies bRa)$ (all edges bi-directional)
- Antisymmetric $\Leftrightarrow \forall a,b \in A: (aRb \land bRa \implies a = b)$ (e.g. $\neq$)
Contrapositive: $\forall a,b \in A: (a \ne b \implies a\cancel{R}b \lor b \cancel{R}a)$
- Asymmetric ⇒ Antisymmetric
- Asymmetric ⇒ irreflexive
Transitive $\Leftrightarrow (\forall a,b,c: aRb \land bRc \Rightarrow aRc)$
- $aRb,bRa,a\cancel{R}a$ is not transitive
- Irreflexive + Transitive ⇒ Asymmetric
Connected $\Leftrightarrow (\forall a,b \in A: a\ne b \Rightarrow aRb \lor bRa)$
- Doesn’t mean that graph is connected
Partial Order: Reflexive + Antisymmetric + Transitive (e.g. $\le$, divides)