Examples
Natural Numbers: $B = \{0\}, F=\{(x \to x + 1)\}$
Integers: $B=\{0\}, F=\{(x \to x + 1), (x \to -x)\}$
$List[X]$ - Set of Lists of elements in $X$: $B=\{[]\}, F=\{(l \to l + [x]) : x \in X\}$
Let $C$ be the set generated by $B$ by $F$
If $\forall b \in B, P(b)$
And $\forall f \in F, \forall a_1, \dots, a_m \in C, (P(a_1) \land \dots \land P(a_m)) \implies P(f(a_1, \dots, a_m))$
Then $\forall x \in C, P(x)$
Let $S \sub \N$ be non-empty, $a$ is a minimal element of $S$ if $\forall b \in S, (a \le b)$ (With respect to a partial order)
Well Ordering Principle: For any non-empty $S \sub \N$, $S$ has a minimal element