Conditional Probability: $P(A|B)$ - Probability of $A$ given $B$
Independent Events: $A,B$ are independent $\Leftrightarrow P(A|B)=P(A)$
Partition: $\{A_1, A_2, \dots, A_k\}$ is a partition of $\Omega$ if:
Law of Total Probability: If $\{B_1,B_2,\dots, B_k\}$ is a partition and $\forall i, P(B_i)>0$
Bayes’ Theorem: If $\{B_1,B_2,\dots, B_k\}$ is a partition and $\forall i, P(B_i)>0$/m