Random Variables

Random Variable: Function $X:\Omega \to \mathcal{R}$ ($\Omega$ is a sample space, $\mathcal{R}$ is a measurable space)

$P(X=x) = p(x)$: The probability that $X$ takes the value $x$.

Discrete Probability Distribution

Expected Value / Mean: $E(X)= \mu = \sum_x x\cdot P(X=x)$

Variance: $V(X) =$ Expected value $E[(X-\mu)^2]$

Standard Deviation: $S(X)= |\sqrt{V(x)}|$

Distribution Function: $F: \mathcal{R} \to [0, 1]$

Probability Distributions

Bernoulli Distribution