Random Variable: Function $X:\Omega \to \mathcal{R}$

Continuous Random Variable

Continuous Random Variable: Random variable with an uncountably infinite range

Cumulative Distribution Function (CDF): $F(x)=P(X\le x)$ for $-\infty < x < \infty$

Continuous: Random variable $X$ is continuous if $F(x)$ is continuous for $x\in(-\infty, \infty)$

Probability Density Function (PDF): $f(x)= \frac{dF(x)}{dx}=F'(x)$ is the PDF for $X$

Expected Value: $E(x)=\int_{-\infty}^{\infty}x \cdot f(x) \, dx$

Variance: $V(X) = E(X^2)-E(x)^2$

Uniform Distribution

Uniform PDF: Linear distance between two 1D points