(Range and Null Space of linear transformations)
The range (or image) of a linear transformation $T:V \to W$ is the set of vectors $T$ can output.
$\text{range}(T_M)=\text{col}(M)=\{\vec{y}\in W : \vec{y} = T_M(\vec{x}) \text{ for some } \vec{x} \in V\}$
Range ≠ Codomain
For a linear transformation $T:\mathbb{R}^n \to \mathbb{R}^m$,
The rank of $T$ is the dimension of $\text{range}(T)$
$\text{rank}(T)=\text{dim}(\text{range}(T))$
Note: A plane in $\mathbb{R}^3$ has dimension 2, and the dimension of $\mathbb{R}^3$ is 3!!
The null space or kernel of a linear transformation $T: V \to W$ is the set of vectors that get mapped to the zero vector under $T$
$\text{null}(T)=\{ \vec{x} \in V : T(\vec{x}) =\vec{0}\}$