Let $\mathcal{A}$ and $\mathcal{B}$ be bases for $\R^n$, matrix $M$ is a change of basis matrix if:
$M[\vec{x}]{\mathcal{A}}=[\vec{x}]{\mathcal{B}} ~~~~ \forall \vec{x}\in\R^n$
$M=[\mathcal{B} \leftarrow \mathcal{A}]$
Note: Change of basis matrix are one-way.
Let $A=\{\vec{a}_1, \vec{a}_2\}, B=\{\vec{b}_1, \vec{b}_2\}$
Let $T:\R^n\to\R^n$ be a linear transformation and let $\mathcal{B}$ be a basis for $\R^n$
The matrix for $T$ with respect to $\mathcal{B}$ is $[T]_{\mathcal{B}}$
$[T(\vec{x})]{\mathcal{B}}=[T]{\mathcal{B}}[\vec{x}]_{\mathcal{B}}$
$M=[T_M]_\mathcal{E}$
$[T]B=[B\leftarrow \mathcal{E}][T]\mathcal{E}[\mathcal{E} \leftarrow B]$