Set Addition (Set Sum)

Sum of the vector values within a set.

$A+B=\{\vec{x}:\vec{x}=\vec{a}+\vec{b}\text{ for some }\vec{a}∈A \text{ and } \vec{b} ∈ B\}$

$A+(B∪C)=(A+B)∪(A+C)$

Examples

$C=\{\vec{x}∈ℝ^2:||\vec{x}||=1\}$

$X=C+\{\vec{e}_2\}$

$Y=C+\{3\vec{e}_1,\vec{e}_2\}$

Untitled

Span

The span of a set of vectors V is the set of all linear combinations of vectors in V:

$\text{span } V=\{\vec{v}:\vec{v}=a_1\vec{v}_1+\dots+a_n\vec{v}_n \text{ for some } \vec{v}_1, \dots \vec{v}_n ∈ V \text{ and scalars } a_1, \dots a_n\}$

$\text{span} \{\vec{u},\vec{v}\}=\{\vec{x}:\vec{x}=a\vec{u}+b\vec{v} \text{ for some } a,b ∈ ℝ\}$

Representing Lines & Planes

Line: $\text{span}\{\vec{d}\}+\{\vec{p}\}$ is equivalent to $\vec{x}=t\vec{d}+\vec{p}$

Plane: $\text{span}\{\vec{d}_1, \vec{d}_2\} + \{\vec{p}\}$ is equivalent to $\vec{x}=t\vec{d_1}+s\vec{d_2}+\vec{p}$

(Adding $\{\vec{p}\}$ at the end makes it a Translated Span)

(Regular span can only represent lines/planes passing through the origin)

Examples

Linear Dependence/Independence

Linearly Dependent: A set that contains vectors with the same or exactly opposite direction.