Projection

Let $X$ be a set. The projection of $\vec{v}$ onto $X$, $\text{proj}_x\vec{v}$, is the closest point in $X$ to $\vec{v}$

Find $\text{proj}_{\vec{u}_t}\vec{v}$ by minimizing $||\vec{u}_t-\vec{v}||$

For lines and planes: Vector from the projection to the original point is a normal vector.

Undefined Cases

Vector Components

Let $\vec{u}$ and $\vec{v}≠\vec{0}$, the vector component of $\vec{u}$ in the $\vec{v}$ direction is $\text{vcomp}_{\vec{v}}\vec{u}$

Untitled