Flat spaces (lines, planes, volumes...) through the origin are subspaces.
A non-empty subset $V\subℝ^n$ is called a subspace if $\forall\vec{u},\vec{v}\in V, \forall k ∈ ℝ:$
Subspace Properties
Every subspace is a span and every span is a subspace.
$V\subℝ^n$ is a subspace iff $V=\text{span }S$ for some set $S$
Trivial Subspace: Subset $\{\vec{0}\}\sub ℝ^n$ is called the trivial subspace.
A subspace is closed under addition and scalar multiplication.
A basis for a subspace $V$ is a linearly independent set of vectors $B$ so that $\text{span }B =V$
E.g. One Basis for $\text{span}\{\begin{bmatrix} 0\\1 \end{bmatrix},\begin{bmatrix} 1\\0 \end{bmatrix},\begin{bmatrix} 1\\1 \end{bmatrix}\}$ is $\{\begin{bmatrix} 0\\1 \end{bmatrix},\begin{bmatrix} 1\\0 \end{bmatrix}\}$
The standard basis $\mathcal{E}$ for $ℝ^n$ is the set $\{\vec{e}_1,\dots,\vec{e}_n\}$ where
$\vec{e}_1=\begin{bmatrix} 1 \\ 0\\ \vdots \end{bmatrix}, \vec{e}_2= \begin{bmatrix} 0 \\ 1 \\ \vdots \end{bmatrix}$
($\vec{e}_i$ is the vector with a 1 in its $i$th coordinate and zeros elsewhere)