Let $\mathcal{B} = \{ \vec{b}_1, \dots,\vec{b}_n \}$ be a basis for a subspace $V$ and let $\vec{v} \in V$.
The representation of $\vec{v}$ in the $\mathcal{B}$ basis, $[\vec{v}]_{\mathcal{B}}$, is the column matrix
$[\vec{v}]_{\mathcal{B}}=\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$ where $a_1,\dots,a_n$ uniquely satisfy $\vec{v} = a_1\vec{b}_1+\dots+a_n\vec{b}_n$
$\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}_{\mathcal{B}}=a_1\vec{b}_1+\dots+a_n\vec{b}_n$
If a problem has only one basis, we can write $\left[\begin{smallmatrix} x \\ y \end{smallmatrix}\right]$ to mean $\left[\begin{smallmatrix} x \\ y \end{smallmatrix}\right]_{\mathcal{E}}$
If there are multiple bases, we will always write $\left[\begin{smallmatrix} x \\ y \end{smallmatrix}\right]_{\mathcal{X}}$
Examples:
For a ordered basis $\mathcal{B}=\{\vec{b}_1,\dots,\vec{b}_n\}$: