Transformations

A transformation is a function.

E.g. $T:ℝ^2\to ℝ^2$ defined by $\begin{bmatrix} x \\ y \end{bmatrix} \to \begin{bmatrix} 2x \\ y \end{bmatrix}$

Image of a Set

Let $L:ℝ^n\to ℝ^m$ be a transformation and let $X\sub ℝ^n$ be a set.

The image of the set $X$ under $L$:

$L(X)=\{\vec{y}\in ℝ^m:\vec{y}=L(\vec{x}) \text{ for some } \vec{x} \in X\}$

Transformation Properties

Linear Transformations

Let $V$ and $W$ be subspaces. $T:V\to W$ is a linear transformation if

$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ and $T(a\vec{v}) = aT(\vec{v})$

$\forall \vec{u},\vec{v}\in V,\forall a \in \mathbb{R}$

Linear Transformation Properties