A transformation is a function.
E.g. $T:ℝ^2\to ℝ^2$ defined by $\begin{bmatrix} x \\ y \end{bmatrix} \to \begin{bmatrix} 2x \\ y \end{bmatrix}$
Let $L:ℝ^n\to ℝ^m$ be a transformation and let $X\sub ℝ^n$ be a set.
The image of the set $X$ under $L$:
$L(X)=\{\vec{y}\in ℝ^m:\vec{y}=L(\vec{x}) \text{ for some } \vec{x} \in X\}$
Let $V$ and $W$ be subspaces. $T:V\to W$ is a linear transformation if
$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ and $T(a\vec{v}) = aT(\vec{v})$
$\forall \vec{u},\vec{v}\in V,\forall a \in \mathbb{R}$
$T(\vec{x})=\vec{y}$ has solutions for all $\vec{y} \in \mathbb{R}^m$
If $M$ is the standard matrix of $T$, the columns of $M$ spans $ℝ^m$
(Every $\vec{v}\in \mathbb{R}^m$ is a linear combination of the columns of $M$)